
Requirements specification

DaCoPAn

Helsinki 2nd March 2004

Software Engineering Project

UNIVERSITY OF HELSINKI UNIVERSITY OF PETROZAVODSK
Department of Computer Science Department of Computer Science

Course
581260 Software Engineering Project (

�
cr)

Project Group
Carlos Arrastia Aparicio
Jari Aarniala
Alejandro Fernandez Rey
Vesa Vainio
Jarkko Laine
Jonathan Brown

Kirill Kulakov
Andrey Salo
Andrey Ananin
Mikhail Kryshen
Viktor Surikov

Customer
Markku Kojo

Project Masters
Juha Taina (Supervisor)
Yury Bogoyavlenskiy (Supervisor)

Turjo Tuohiniemi (Instructor)
Dmitry Korzun (Instructor)

Homepage
http://www.cs.helsinki.fi/group/dacopan

Change Log
Version Date Modifications
1.00 02.03.2004 First published version of the document. To be revised

with the customer.

i

Contents

1 Introduction 1

2 User requirements 1

2.1 Analyzer . 2

2.2 Animator . 3

3 Problem domain model 4

3.1 System scope model . 4

3.2 High-level division model . 4

3.3 Data model . 5

3.3.1 End host log . 5

3.3.2 Additional input logs . 6

3.3.3 Protocol events log . 6

3.4 System constraints . 6

3.4.1 Basic cases and expandability requirements 6

3.4.2 Non-functional requirements for the Animator 7

3.4.3 Performance requirements . 8

3.4.4 Operational requirements . 8

4 Networking scenario descriptions 8

4.1 List of variables . 8

4.2 Implementation priority #1 . 10

4.2.1 201 - IP packet delivery and content 10

4.2.2 310 - IP fragmentation and simple UDP data transfer 10

4.2.3 321 - Three-way TCP connection establishment 11

4.2.4 341 - TCP normal FIN termination 11

4.2.5 361 - Slow start and sending data with TCP 12

4.2.6 362 - TCP fast retransmit (happening in slow start with packet loss) 12

4.3 Implementation priority #2 . 13

4.3.1 333 - TCP packet loss . 13

4.3.2 411 - HTTP: Simple request with reply 13

4.4 Implementation priority #3 (Postponed networking scenarios) 14

4.4.1 101 - ARP Lookup . 14

ii

4.4.2 322 - Timeout of Connection Establishment 14

4.4.3 351 - Connection reset (RST) 14

4.4.4 412 - HTTP: Retrieval with multiple connections 15

4.4.5 421 - DNS request for A record 15

5 Use cases 15

5.1 Interest groups . 15

5.2 Use case definitions . 16

5.2.1 Use case: Produce a protocol events file 16

5.2.2 Use case: Load an animation file in the animator 17

5.2.3 Use case: Play an animation . 17

5.2.4 Use case: Step forward in an animation 18

5.2.5 Use case: Add breakpoints to an animation 18

5.2.6 Use case: Add comments to an animation 19

5.2.7 Use case: Configure an animation 20

5.2.8 Use case: Save tunable options for the animator 20

5.2.9 Use case: Visualize different levels of detail 21

5.2.10 Use case: Visualize different protocol layers 22

6 System requirements: Analyzer 22

6.1 Produce protocol events file . 25

6.2 Log Reader . 25

6.3 Message mapping . 26

6.4 Events calculator . 27

7 System requirements: Animator 27

7.1 Message Sequence Chart animation . 27

7.1.1 Overview . 27

7.1.2 Features of the Message Sequence Chart (MSC) animation 27

7.1.3 Application layer on MSC . 29

7.1.4 Operating modes for the MSC animation 29

7.1.5 "Show data below now line" setting 30

7.1.6 Presenting numerical information about events 30

7.1.7 Breakpoints and notes . 31

iii

7.2 Encapsulation animation . 31

7.2.1 Presenting numerical information about packets/encapsulation . . 31

7.2.2 Mapping transfer units to other units in higher layers 32

7.2.3 Mapping breakpoints and notes to encapsulation animation 33

7.3 Unit Flow Orchestration animation . 33

7.4 Transfer Progress Indicator animation 34

7.5 Scenario file format . 34

8 Protocol events file 35

9 High-level architecture 35

9.1 Analyzer . 36

9.2 Animator . 36

9.2.1 File input and output . 37

9.2.2 Animation . 37

9.2.3 User Interface . 37

1

1 Introduction

This document describes the requirements for the DaCoPAn project. This document has
been written as a contract between the customer of the final product and the teams plan-
ning and developing the project. It is also a guideline for designers and developers about
the functionalities performed by the final product and the problems that it solves. This
will be the first version of the final product, what means that some requirements are also
focused in the extension of the project by other groups in the future.

The DaCoPAn project stands for playbacking animations of packet trace information cap-
tured from real data communication traffic. Serving as a tool for different users for self-
learning, teaching and resear

The following contents of the document are structured in this way:

User requirements gathering requirements from each part of the system by telling what
that entitie should do.

Next comes the problem model domain with explanations about the system scope, a high-
level division model explaining the subsystems to be developed and their problems, data
model presenting the requirements about the data used and processed by the system and
the constraints gathering requirements for expandability, performance, environments of
operation and non-functional requirements.

Another section collects networking scenarios that are going to be used as base to develop
and test the program. In these scenarios is explained the behaviour of the network proto-
cols and the values of header fields and implicit variables that are needed to visualize. All
these scenarios are prioritized in three categories the last one of lower priority just present
cases to be implemented in future versions of the product and are written to be a reference
for a design that will allow future extensions.

The document continues with a list of use cases representing the different uses and ac-
tions that the different actors can have over the system. The main actors are teachers,
researchers and students and they use the functions offered by the product in a different
way and with different intersts.

In the next section the system requirements are presented for the subsystems composing
the product and the intermediate file that serves as bridge between them, explaining in
detail the different functions that should perform.

Finally a section showing the high level architecture of the system and making a presenta-
tion of the different components that should be develop for each subsystem from the point
of view of their functionality .

2 User requirements

According to the discussions with the customer, the product is divided in two subproducts,
the Analyzer and the Animator. In this section the requirements given explicitly by the

2

customer are listed.

2.1 Analyzer

This part of the product will be a program that takes two source logs collected by a tool
called tcpdump, merges and processes the data and then stores it in some intermediate file
format readable by the animator part. The basic user requirements for the analyzer are
presented in the list below.

� The analyzer requires two tcpdump log files. It also needs two IP addresses for
selecting two hosts from the tcpdump logs. All possible information which is rele-
vant to any of these hosts should be stored in the file created by the Analyzer. Other
information will be ignored. User of the analyzer can filter unwanted messages out
of the logs for example by using tcpdump filters.

� Not all data is explicitly stored in tcpdump logs, e.g. TCP states or protocol vari-
ables. Special calculations, perhaps with additional logs, are needed to get this data.
The basic version of the Analyzer will support these calculations on a minimal re-
quired level, but the output file format must be designed to be able to store all this
data.

� The analyzer should support HTTP, DNS and perhaps another UDP-based applica-
tion on the application layer. It should also support TCP and UDP on the transport
layer and IP on the network layer. The UDP-based application doesn’t have to be
specified — the idea is that a teacher user can use whatever UDP-based program to
produce tcpdump logs presenting large packets and IP fragmentation. ARP commu-
nication should be present in the intermediate file format in some way even though
the link level in general is not required.

� If there is time difference between the two tcpdump logs, the user must enter the
difference manually. If no time difference is set, the analyzer assumes that the times
are synchronized. Always when possible, the order of the protocol exchange should
anyway be determined based on IP identifiers and not the timestamps from the logs.

� It is assumed that in the tcpdump logs the IP packets always arrive in the same order
that they were sent. The software doesn’t need to be able to analyze or visualize
cases where this is not true.

� The delays between messages should be included in the output file. In case the time
difference is not set correctly, the data in the file can be incorrect.

� The analyzer supports IP version 4. A possible expansion to version 6 should be
taken into account at the design for the intermediate file format.

3

2.2 Animator

The animator part of the product reads in intermediate files written by the analyzer and
animates the communication and other data present in the file. Alternatively, the Animator
may read in a Scenario file that contains the animation data but also contains information
about a sequenced presentation of the data and possibly textual notes to be presented to
the user.

In the following list some basic requirements for the animator are presented.

� The user should be able to start and pause the animation and rewind and forward it
by steps of one or more animation units.

� The user should be able to select the speed of the animation.

� The user should be able to select the network traffic flows to be shown in the anima-
tion. The flows should be presented some way so that they are easily distinguished,
for example in different colors. (Note: This requirement will be removed if we
decide to limit the number of simultaneous flows to one flow)

� The user should be able to specify breakpoints in the animation, i.e. specific times
when the animation automatically pauses for input from the user. The breakpoints
should be specified by using the Animator user interface and saved in the Scenario
file format.

� The author of the presentation should be able to add notes (comments) to the pre-
sentation. The notes should then be shown by the animator to the user.

� The user should be able to select the exact set of variables to be shown in the ani-
mation. These detail settings can be then saved and later loaded into the program
as part of the Scenario file.

� The user should be able to select a specific layer (application, transport or network)
for viewing on the fly. Encapsulation of the layers should be present in the anima-
tion in some way refined later.

� The occurrence of ARP communication should be shown in the presentation in
some way. (Note: This is an optional requirement for this project.)

� The user should be able to configure the exact set of host variables and protocol
header fields to be shown. The selection is done out of the information present in
the loaded animation data file and thus depends on what information the Analyzer
saves in the file. The user may be able to view detailed information on a packet for
example by clicking it. Basic (relevant to current scenario) information is visible
all the time.

� Relevant information of both endpoints should be shown upon user request. This
includes port number, ip address, hostname etc. (Note: This information is shown

4

only if it has been provided by the user running the analyzer. Neither the Analyzer
or the Animator is expected to make network connections to find out this informa-
tion by e.g. making DNS queries.)

� If information on the delays between the packets is present in the intermediate file
created by the analyzer, an option should be available to visualize the delays in the
animation.

3 Problem domain model

3.1 System scope model

The system scope model is used to represent relations between the product and external
entities. It reflects product purposes, input data requirements and restrictions, user abil-
ities, and possible directions of product further development. The system scope model
diagram is shown at Figure 1.

USER

packet trace 2

additional data

packet trace Npacket trace 1

− the system has possibility to
 process more than two logs

OPTIONAL

− tcpdump is used to gather data
− one log file is collected for each host
− tcpdump logs contain all necessary
 data needed for visualisation
− log file size is not large
− the system is not responsible for
 gathering tcpdump logs,
 logs synchronization
− user is responsible for setting IP adresses

− configure animation
− change configuration on the fly
− change animation speed, stop and resume
 animation, pause and rewind animation
 adjust host timers
− edit protocol events file by an external
 text editor

OPTIONAL

− the system has possibility to animate

− the system has possibility to support
 additional information, e.g TCP
 variables or states

 complex protocol features

− educational purposes (higher)
− research purposes (lower)

USABILITY (PRIORITY)

has ability to

The DaCoPAn system

Figure 1: System scope model

3.2 High-level division model

For the distributed development, the problem must be divided into two parts. According
to customer’s requirements, the product can be divided into separate software programs:

5

consolidation program (analyzer), which takes the source logs, merges the data (message
mapping) and stores it in the intermediate format (protocol events file), and the animation
program (animator), which takes the protocol events file as an input source and performs
the animation.

Possible problems for the SE subsystems development:

Analyzer: Hard to test; it requires comprehensive collection of different network traffic
logs and access to gather the real network traffic. Developers have to have good
enough skills in system programming, algorithms and data structures. Deep knowl-
edge of internet protocols is also required to construct the messages mapping algo-
rithm and to design an expandable file format for protocol events.

Animator: Developers need to interact with the customer to discuss prototypes of possi-
ble user-interfaces and scenarios of animations. User interface expertise is required
to design and implement this subsystem. The educational and research aspects
should be combined in a balanced proportion. The animator developers need to
prepare a list of requirements which the data protocol events file format should
fulfil.

Protocol events file: The protocol event file is an interface between the analyzer and the
animator. It has to store all the necessary (implicit and explicit) information for the
animator. The current consensus for the file format is an XML solution. This will
make it more simple for the animator to parse, and the storage of the information
is well structured and sufficiently extensible. In the planning and design phases
each group needs to maintain sufficient communication with the other in order to
facilitate the development of a good file format. An initial list of information and
requirements for the animator will be needed in the development of the protocol
events file format.

3.3 Data model

This section presents user requirements for data used in the DaCoPAn system.

3.3.1 End host log

End host log is a packet trace for the Internet protocols gathered using tcpdump tool.
Tcpdump catches packet headers on a network interface. Packet headers are stored in a log
file in sequential order. All necessary data for network protocol animation (e.g identifier
for IP, sequence number for TCP, source and destination ports for UDP, etc.) can be
extracted from corresponding packet header. It is enough to have complete packet headers
information for basic animation. The log is in binary format. Real data communication
traffic is a source for this log.

The upper bound for size of end host logs is tens of records rather than hundreds.

6

End host logs are always gathered in such a way that the problem of their analyzing is
solvable. Built-in filters of tcpdump are used to leave unwanted data out of the log files
and the latter contain only protocol exchange between two end hosts. IP identifiers should
be used for constructing the mapping between end host logs.

A collection of such logs should be available and it covers all required scenarios.

3.3.2 Additional input logs

Basic version of the DaCoPAn system does not support additional input logs in the an-
alyzing process. For later extensions, this possibility must be taken into account in the
design (e.g. TCP variables, states, etc.).

3.3.3 Protocol events log

It is a consolidated sequence of protocol events in chronological order produced by the
analyzer. All information from end host logs and additional input logs must be stored.
Basic case is two end hosts but the design must support later extensions for more number
of hosts involved in communication.

Although the basic analyzer does not support additional input logs, the format of analyzed
data must allow to add this information manually.

Timestamps for each end host and differences in the timers are stored.

3.4 System constraints

3.4.1 Basic cases and expandability requirements

The software animates the data communication between two hosts. Possible networking
scenarios are represented in the “Networking scenarios” document. The software product
must support scenarios that have the highest priority, and optionally may support other
scenarios.

The Protocol events file (intermediate file) format must represent protocol events for the
data communication between two hosts. Also it must have the fields for the protocol
variables, that may be optionally filled in by user.

The Protocol events file format must be expandable to represent protocol events data for
more than two hosts. Also it must be expandable to support additional data communica-
tion protocols and protocol variables. The software must be designed so that it would be
expandable to support the additional format features listed above.

The file formats should be designed so that they are easily compatible with future versions
of the software, and with different versions of the product during this project’s life-span.
The file formats do not need to support manual editing: the software doesn’t need to be

7

tolerant of formatting errors and the software doesn’t need to give specific and verbose
error messages if there are unexpected errors in the files.

3.4.2 Non-functional requirements for the Animator

Usability
The Lecturer user is expected to be able to spend necessary time for studying documen-
tation so that he can learn to prepare necessary scenario files. A Lecturer user will not be
expected to spend more than two hours for studying user documentation and the program
until he is able to prepare custom presentations.

The Student user is the main usability concern. The user must be able to load and view an-
imations without any extra help files and without spending time on learning the functions
of the program.

He/she may need to spend some time learning the functions of the program, if he wants
to change the animation settings or save his own modified scenario files. Modification
should be possible without additional help files, but a small amount of trial and error is
acceptable. If the student wants to save modified scenario files, the same expectations
apply to him as does to the Lecturer user.

Download size
The Animator software should be easily accessible by students using any computer con-
nected to the internet, such as a home workstation. Ideally the time it takes to download
and start the application should be no more than 2-3 minutes (provided that the worksta-
tion already has the Java runtime environment installed). This in turn implies that the total
download size of the Animator application should preferably be 500 kilobytes or less.

Localization
The Animator should be localized to be usable in Finnish, Russian and Spanish in addition
to the English version. This implies that the software should be designed so that localizing
can be done in fast and simple way, using a separate XML or other textual file interface.

Reliability
The worst damage from program failure is user frustration. However, the language proper-
ties of Java facilitate building very errorfree and reliable software, so the program should
be errorfree so that the student user does not notice any errors.

Security
The program does not process private or confidential data, so there are no security expec-
tations for the program.

Maintainability
In order to allow for future enhancements to the Animator, the codebase should be thor-
oughly tested and written using clear and consistent code conventions. Any design de-
cisions made in the design phase should be well documented: for example, using well-
established design patterns is highly recommended, as they will make the code easily
approachable for any teams assigned to add new features to the application in the future.

8

3.4.3 Performance requirements

Analyzer have no strict performance requirements, but it must take a reasonable amount
of time and system resources to produce an intermediate file from the source logs
with at most a few hundreds of packets (typical case is tens of packets).

Animator must produce the animation at requested speed (no more than 2 packets per
second) without any noticeable delays on a 500 MHz CPU with 128 MB RAM
available.

3.4.4 Operational requirements

Operational requirements are different for the analyzer and animator parts of the software:

Analyzer must work in the Linux operating system, must be invokable from the command-
line and support arguments for specifying two log files and two IP addresses (re-
quired arguments). Some additional (optional) arguments may be supported as well
(at least the time difference argument).

Animator must work on any operating system platform supporting Java as a stand-alone
application or inside a web browser (as either an applet or a web startable applica-
tion).

4 Networking scenario descriptions

The primary goal for the product pair created in this project is to teach networking princi-
ples to students at different level of knowledge. For this use it is useful to know what kind
of thing they should be able to learn with the tool. In this section the most important ani-
mation scenarios for the student are listed in order to give the reader some understanding
about the teaching goals for the product but to present one of the bases for requirement
gathering. More information about the networking scenarios can be found in another
document titled Networking scenarios.

4.1 List of variables

List of variables, layers of use and their scenarios:

� MTU value - Network layer: 201 - 310

� TCP states - Transport layer: 321 - 341 - 322 -351

� Congestion window cwnd - Transport layer: 361 - 362

� Slow start threshold size ssthresh - Transport layer: 362

9

� Retransmission Timeout (RTO) - Transport layer: 362 - 333

� Request and reply headers - Application layer: 411 - 412

� Header fields: questions and answers - Application layer: 421

� RST flag - Transport layer 351

� Duplicated ACK (dupack) Threshold 362

List of variables per priority and scenario:

� Priority 1:

– 201 IP Packet delivery and content - Network layer
MTU value

– 310 IP Fragmentation and simple UDP data transfer - Network layer
MTU value

– 321 Three-way TCP connection establishment - Transport layer
TCP states

– 341 TCP normal FIN termination - Transport layer
TCP states

– 361 Slow start and sending data with TCP - Transport layer
Congestion window (cwnd)

– 362 TCP fast retransmit (happening in slow start with packet loss) - Transport
layer
Congestion window (cwnd), slow start threshold size (ssthresh), Retransmis-
sion TimeOut (RTO)

� Priority 2:

– 333 TCP packet loss - Transport layer
Retransmission TimeOut (RTO)

– 411 HTTP: Simple request with reply - Application layer
Request and reply headers

� Priority 3:

– 101 ARP Lookup - Link layer
None particular

– 322 TCP Timeout of Connection Establishment - Transport layer
TCP states

– 351 TCP Connection reset (RST) - Transport layer
TCP states, RST flag

10

– 412 HTTP: Retrieval with multiple connections - Application layer
Request and reply headers

– 421 DNS request for A record - Application layer
Header fields: requests and answers

Notes:

� All the following networking scenarios need as variables timestamps, so it will not
be present in the following description, but this variable is needed.

� The names for protocol header fields are the used in their respective RFCs

� The protocol header fields in the layers description contain the header fields which
are relevant for educational purposes, but the protocol events file should contain, if
possible, all the header fields of the protocol.

� By default the following scenarios try to be as simplified as possible and do not
support delayed ACKs nor DNS lookups nor connection establishment. Unless that
it is explicitly written.

� Some of the scenarios presented with priority 3 do not present list of variables nor
protocol header fields. They should be filled in revisions of the document for future
improvements.

4.2 Implementation priority #1

4.2.1 201 - IP packet delivery and content

Description: A sends an IP datagram to B.

Relevant layers: Network layer

Network layer.
Protocol header fields Total Length, Datagram Identification, Flags (DF=1, MF),

Offset, Source IP Address, Destination IP Address, Ver-
sion, Header Length, Time To Live, Checksum, Options

Variables MTU

4.2.2 310 - IP fragmentation and simple UDP data transfer

Description: This scenario combines IP fragmentation and simple UDP transfer. A sends
an UDP packet to B. This is sent using IP and the size of the data to be sent exceeds
the MTU value of the network. The data is fragmented into some IP datagrams and
sent to B. B receives them and proceeds to their defragmentation. At this point the
original UDP packet sent is received in B.

11

Relevant layers: Network layer, Transport layer

Transport layer.
Protocol header fields Source Port, Destination Port, Length
Variables -

Network layer.
Protocol header fields Total Length, Datagram Identificator, Flags (MF, DF),

Offset
Variables MTU value

4.2.3 321 - Three-way TCP connection establishment

Description: Endpoint A (client) wants to start a communication with B (server) to trans-
fer information using the TCP protocol. Then uses the three-way TCP connection
establishment mechanism to assure that the server can attend its request. Three TCP
packets are sent to the network in this process. The first one from A to B specifying
that A wants to connect to B and the port to do it. In the second the availability of B
is confirmed to A by an acknowledgement. Finally A acknowledges B the reception
of its last packet sent. At this point the TCP connection is established.

Relevant layers: Transport layer

Transport layer.
Protocol header fields Sequence Number, Acknowledgment Number, Flags

(SYN, ACK), Maximum Segment Size (Options with
Kind=3)

Variables TCP states

4.2.4 341 - TCP normal FIN termination

Description: A client host wants to end the TCP connection existing between it and a
server host. Four packets are needed to close the connection.

Relevant layers: Transport layer

Transport layer.
Protocol header fields Sequence Number, Acknowledgment Number, Flags

(FIN, ACK)
Variables TCP states

12

4.2.5 361 - Slow start and sending data with TCP

Description: A TCP connection has been established between 2 hosts. The slow start
algorithm controls TCP flow. It operates by observing that the rate at which new
packets should be injected into the network is the rate at which the acknowledg-
ments are returned by the other end, using the congestion window, called cwnd.
The TCP dataflow is bidirectional, that is both endpoints are sending TCP packets
to each other.

Relevant layers: Transport layer

Transport layer.
Protocol header fields Sequence Number, Acknowledgment Number, Flags

(ACK), Maximum Segment Size (Options with Kind=3)
Variables Congestion window (cwnd)

4.2.6 362 - TCP fast retransmit (happening in slow start with packet loss)

Description: This scenario starts with the normal slow start defined in the scenario num-
ber 361 and once a packet is lost the TCP fast retransmit algorithm starts. TCP is
required to generate an immediate acknowledgment when an out-of-order segment
is received. This duplicate ACK should not be delayed. The purpose of this du-
plicate ACK is to let the other end know that a segment was received out of order,
and to tell it what sequence number is expected. From A point of view, duplicate
ACK is caused by a lost segment or just a reordering of segments, so it waits for
a small number of duplicate ACKs (dupack threshold) to be received. If three or
more duplicate ACKs are received in a row, it is a strong indication that a segment
has been lost. The client then performs a retransmission of what appears to be the
missing segment, without waiting for a retransmission timer to expire. Slow start is
not performed after the three duplicate ACKs are received because the receipt of the
duplicate ACKs tells the client more than just a packet has been lost. Since the re-
ceiver can only generate the duplicate ACK when another segment is received, that
segment has left the network and is in the receiver’s buffer. That is, there is still data
flowing between the two ends, and we don’t want to reduce the flow abruptly by
going into slow start. Next, congestion avoidance, but not slow start is performed.

Relevant layers: Transport layer

Transport layer.
Protocol header fields Sequence Number, Acknowledgment Number, Flags

(ACK), Maximum Segment Size (Options with Kind=3)
Variables Congestion Window (cwnd), slow start threshold size

(ssthresh), Retransmission TimeOut (RTO), Duplicated
ACK (dupack) Threshold

13

4.3 Implementation priority #2

4.3.1 333 - TCP packet loss

Description: The idea is to show a simple timeout and retransmission example. A (the
client) sends a TCP packet in an established TCP connection to B (server). If after
a given timeot expires (RTO: Retransmission Timeout) the acknowledgement for
the packet has not been received, the packet is sent again. In the meanwhile B is
waiting for more packets to arrive, if a new packet is received it answers with an
acknowledgement packet, if not, after a timeout B will close the connection.

Relevant layers: Transport layer

Transport layer.
Protocol header fields Sequence Number, Acknowledgment Number, Flags

(ACK)
Variables Retransmission TimeOut (RTO)

4.3.2 411 - HTTP: Simple request with reply

Description: A client (web browser) requests an HTML page from a server and receives
it using HTTP protocol.

Relevant layers: Application layer

Application layer.
Protocol header fields Request = Request line + general header + request header

+ entity header + message body
Response = Status line + general header + entity header +
message body

Variables Request and reply headers

Transport layer.
Protocol header fields -
Variables -

14

4.4 Implementation priority #3 (Postponed networking scenarios)

4.4.1 101 - ARP Lookup

Description: A has the IP address of B and wants to know B’s physical ethernet address.
A sends broadcast ARP request for the address of B, B recognizes its IP address
and answers to A.

Relevant layers: Link layer

Link layer.
Protocol header fields Type of message (request/response), physical and network

addresses of source and destination
Variables -

4.4.2 322 - Timeout of Connection Establishment

Description: During an attempt of connection establishment it can happen that the server
doesn’t answer after beginning a connection establishment request. The client has
to handle this sutuation and set a timeout to exit if the reply to its request is not
received.

Relevant layers: Transport layer

Transport layer.
Protocol header fields
Variables TCP states

4.4.3 351 - Connection reset (RST)

Description: In general, a reset is sent by TCP whenever a segment arrives that doesn’t
appear correct for the referenced connection. This can happen in the following three
situations:
* Connection Request to Nonexistent Port
* Aborting a connection
* Detecting Half Open Connections

Relevant layers: Transport layer

Transport layer.
Protocol header fields
Variables TCP states and RST flag

15

4.4.4 412 - HTTP: Retrieval with multiple connections

Description: An HTML page with a couple of images is downloaded from the server.
The data is downloaded using several connections, one for each file.

Relevant layers: Application layer, Transport layer

Application layer.
Protocol header fields Request = Request line + general header + request header

+ entity header + message body
Response = Status line + general header + entity header +
message body

Variables Request and reply headers

Transport layer.
Protocol header fields -
Variables -

4.4.5 421 - DNS request for A record

Description: Some application wants to find out the IP address for some domain name. It
sends the address to a DNS server that then replies with the correct address record.

Relevant layers: Application layer

Application layer.
Protocol header fields Identification, flags, number of questions, number of an-

swer RRs, number of authority RRs, number of additional
RRs.

Variables Header fields: questions and answers

5 Use cases

5.1 Interest groups

People who will be using the DaCoPAn product can be divided in three groups: teachers,
students and researchers.

The teachers’ main interest is to use the software as a helper tool in teaching network
protocols. They might want to use the product in a class room situation as a substitute for
Power Point slides or to give exercises to the students to solve.

16

The students will be using the software to learn how the network protocols function. They
will be able to download the software along with intermediate files from a web site so that
they can watch the animations on a computer either at home or in a classroom.

Researchers might be interested in using the tool to visualize the behavior of real networks
in some interesting cases. They are not interested in the same simple cases as the other
interest groups but instead have their own tcpdump file pairs that they want to analyze.

5.2 Use case definitions

There are three different types of actors: teacher, student, researcher. In each use case
the primary actor is emphasized. The identification of the use cases is mainly based on
discussion with the customer.

5.2.1 Use case: Produce a protocol events file

Actors: Teacher, researcher

Description: The user creates a protocol events file (intermediate file) using the analyzer
tool. He/she gives two packet traces along with other additional information to the
analyzer which then combines the data and produces a protocol events file.

Pre-conditions:

� User should gather a pair of packet traces files to be passed as input to the analyzer.

Steps:

1. The user invokes the analyzer program from the command line (or any another in-
terface) passing the filenames of these packet trace files and some other mandatory
and/or optional parameters (as IP identifiers and ports of the end hosts...).

2. The analyzer validates the syntax of the packet traces files.

3. The analyzer merges the packet trace files using the data that belong to connections
specified by parameters.

4. The analyzer produces and output file with all the information acquired from the
packet traces. The format of this file is suitable to be played in the animator.

Variations:

#1: The analyzer may be able to detect errors in the parameters passed as input and report
about it to the user.

#2: The analyzer may detect syntax errors in the packet trace files passed as input and
return a detailed report to the user about the errors found in the files.

17

#3: The analyzer may detect erroneous behavior of the endpoints derived from the anal-
ysis of the packet trace files, and inform the user about this.

5.2.2 Use case: Load an animation file in the animator

Actors: Student, researcher, teacher

Description: The actor provides the animator with a file which has data in a specified file
format. The file format can be Protocol events file or Scenario file.

Pre-conditions:

� The actor should get the animation file from some source. In general, a student
should get it from a teacher, and researcher and teacher should know how to get it
from the analyzer.

Steps:

1. The actor selects the file to be loaded.

2. The animator might succeed in loading the file or not.

3. The result of the loading should be shown to the actor within a reasonable delay
(some seconds).

Variations:

#1: The loading could be erroneous and the intermediate file rejected by the analyzer.

5.2.3 Use case: Play an animation

Actors: Student, teacher, researcher

Description: After loading an animation, the user watches it by pressing the play button.

Pre-conditions:

� The user has loaded an animation file into the animator.

Steps:

1. User presses play.

2. The animation starts running on the screen. In the animation information about the
data transfer is shown.

18

3. The animation ends when all the data has been shown or the user presses the stop
button.

Variations:

#1: The user can pause and then continue the animation while watching it.

#2: The user can interrupt watching an animation by pressing the stop button.

5.2.4 Use case: Step forward in an animation

Actors: Student, teacher, researcher

Description: The user selects how many steps he/she wants to step forward. The anima-
tion is then moved to that point and continued from there in stop/scroll mode.

Pre-conditions:

� The user has loaded the animation file into the animator.

� The animator is in stop/scroll mode

Steps:

1. The user selects amount of steps to move in animation.

2. The system then moves the current position in the animation to that location and
pauses there. It does not animate the skipped frames but draws their results.

3. When the user has inspected the information at that animation location he/she con-
tinues the animation by playing it, stepping forward again, or he/she can also stop
the animation there.

Variations:

#1: The user can also step backwards in an animation.

5.2.5 Use case: Add breakpoints to an animation

Actors: Teacher, student, researcher

Description: The user has found an interesting spot in the animation where he/she wants
to pause the animation for example when using the animation as a lecture presenta-
tion. He/she then marks that point in the animation as a breakpoint.

Pre-conditions:

19

� The user has loaded the animation file into the animator.

Steps:

1. The user scrolls the animation to the place where he/she wants to add the breakpoint.

2. The user presses the "add breakpoint" button.

3. The system adds a breakpoint to that point in the current layer/animation type of
the animation.

Variations:

#1: The user can also remove breakpoints from an animation.

5.2.6 Use case: Add comments to an animation

Actors: Teacher, researcher, student

Description: In some interesting point in the animation the user adds a comment to ex-
plain the behavior of the viewed protocol.

Pre-conditions:

� The user has loaded the animation file into the animator.

Steps:

1. The user scrolls to the place where he/she wants to add the note.

2. The user uses some means provided by the animator to add the note to the anima-
tion.

3. The note is added to the current view at the selected point.

Variations:

#1: User edits comments in an animation.

#2: User removes comments from an animation.

20

5.2.7 Use case: Configure an animation

Actors: Teacher, student, researcher

Description: A user can select levels of animation. He/She selects the set of variables for
animation (these settings can be saved and later loaded into the program) protocol
layer (application, transport or network) and flows to be shown for viewing on the
fly.

Pre-conditions:

� User has loaded an animation.

Steps:

1. The user tunes the animation through an interface (selecting options through click-
ing on them for instance, using buttons, checkboxes,...)

2. The animator changes the visualization according to the user choices and to the
network data available.

Variations:

#1: Variations will come from the different kinds of animation configuration controls
available, the available data and the user interaction with the animator.

#2: The user can configure the animation at any time.

5.2.8 Use case: Save tunable options for the animator

Actors: Teacher, researcher, student

Description: After using the software and deciding a custom set of tunable options, the
user saves this configuration for future sessions.

Pre-conditions:

� The user has selected and changed the default or previous values of configuration
for the animator.

Steps:

1. The user selects the option for saving the current configuration.

21

2. The animator gather all the information about the changing values in configuration
and selects which can be saved for the next session (maybe some options are not
available to the user before loading the files and the animator should be aware of
this)

3. The animator saves a configuration file that can be loaded the next time the animator
is opened.

Variations:

#1: It is possible that saving the current configuration is impossible. An error message
could be shown to the user.

5.2.9 Use case: Visualize different levels of detail

Actors: Student, researcher, teacher

Description: The actor should be able to choose between different levels of detail in
animation, specially concerning different available header information or available
protocol variables. It should be possible for the actor to change the set of variables
during the animation process as well. This might be specificaly interesting for
researcher and student.

Pre-conditions:

� The actor must have loaded a file containing the protocol information. The infor-
mation to be visualized must be present, if not, it won’t be possible to choose it for
visualization.

Steps:

1. The actor can choose a default set of variables to show at the beginning of the
animation.

2. The set of variables can be tuned at any moment by selecting which header fields
and host variables should be visible.

Variations:

#1: The set of variables of an animation must be present in the data used by the ani-
mator in order to be shown, if not the details must be somehow be presented as
unavailable.

22

5.2.10 Use case: Visualize different protocol layers

Actors: Student, researcher, teacher

Description: The actor should be able to visualize protocol information in the different
layers that the networking scenario is featuring. That is, if the scenario takes place
in several layers at a time, the actor should be able to select in which layer he wants
to visualize the information. This might be interesting for the student to help him
understanding encapsulation and protocol stack.

Pre-conditions:

� The actor must have loaded a file containing the protocol information. The in-
formation to be visualized must be present, if not, it won’t be possible to choose
it for visualization. Different protocol layers are only viewable depending on the
networking scenario.

Steps:

1. The actor can choose a protocol layer to show at the beginning of the animation.

2. The protocol layer can be changed at any moment.

Variations:

#1: Not all the network data interchange is viewable in several layers at a time.

Summary of the use case model

The high-level use cases model of the system is shown in Figure 2.

6 System requirements: Analyzer

Expanded use cases describe functional structure of user requirements in more details.
They define typical course of events in the Analyzer. There are on main use case and four
main actions of Analyzer: read tcpdump log files, map messages, calculate events and
write this information in file in some format. See Figure 3.

23

DaCoPAn

Lecturer /
Researcher

Student

Produce a protocol
events file

Load an animation
in the Animator

Play an animation

Gather and filter
packet trace files

Step forward in
an animation

Add breakpoints to
an animation

Add comments to
an animation

Configure an animation

Save tunable options
for the Animator

Visualize different
levels of detail

Visualize different
protocol layers

Figure 2: The use cases

24

Analyzer
Log reader

Calculate events

Map messages

protocol events file

tcpdump log tcpdump log

Read tcpdump log files
and send this information

for mapping

Merge two readed tcpdump
log files in one by

seeking corresponding segments

Calculate TCP states
and some variables, e.g RTT

Write synchronyzed events data with
TCP states and necessary variables

in the intermediate file

Figure 3: Functions of Analyzer

25

6.1 Produce protocol events file

Use case Produce protocol events file

Actors Teacher, researcher
Objective Create protocol events file using two tcpdump log files
Description A user can create protocol events file (intermediate file).

The analyzer combines two packet traces (tcpdump logs)
and produce protocol events file. Analyzer also needs
some additional information (IP identifiers of end hosts,
time difference, etc) for producing protocol events file and
to calculate some events.

Type Main
Typical course of events

User actions System response
1. User selects two tcp-
dump files and send nec-
essary parameters for An-
alyzer (IP addresses of end
hosts, etc)

2. Reads tcpdump files
3. Maps messages
4. Calculates events
5. Writes all necessary information in the protocol events
file

6. User gets protocol
events file

6.2 Log Reader

Log Reader is the Analyzer component, that is responsible for reading binary tcpdump
log files and filling internal memory data structures with the information.

� Input data
Log Reader input data consists of following items:

– Two packet trace files.
The packet trace file corresponds to some host. The packet trace file is ob-
tained using tcpdump tool running on the corresponding host. The packet
trace file is in binary format.

– Two IP addresses.
Each IP address corresponds to one packet trace file and is a valid IP address
of the corresponding host.

26

� Output data
Log Reader output data consists of internal memory data structures. The data struc-
tures specification will be developed during design phase.

� Functionality
This section contains scenarios, which describe the functionality of Log Reader:

Description All mandatory arguments are specified by the user.
Each packet trace file exists, is readable by user, and
not corrupted. This is the basic case.

Action Read the packet trace files and fill the internal mem-
ory data structures.

Description Mandatory parameter is missing. Packet trace file
does not exist, is not readable by the user, or cor-
rupted.

Action Show a message with error description, possibly short
usage information, and terminate the Analyzer.

6.3 Message mapping

Message mapping module in the Analyzer merges data from two tcpdump files

� Input data Tcpdump files as some data structures from the log reader output, IP
addresses of end hosts.

� Output data Information in chronological order about packets where each one
packet corresponds to other

� Functionality

Description All input information is right
Action normal finding of corresponding packets(segments)

according to IP addresses of end hosts

Description IP addresses of end hosts can’t be found in tcpdump
data

Action an error will be returned

Description any correspondence of packets can’t be found
Action an error will be returned

Description for one packet corresponding packet can’t be found
Action this packet will be writed in protocol exchange se-

quence

Description chronological order can’t be presented
Action an error will be returned

27

6.4 Events calculator

Events calculator module in the Analyzer calculates possible variables and TCP states.
First version of Analyzer will support these calculation on the minimal level, but interme-
diate file should be designed to store these data.

� Input data Some necessary data for calculating TCP states (mapping data) and
variables; these data are based on network scenarios.

� Output data List of calculating possible variables and TCP states.

� Functionality

Description All necessary preliminary data for calculating are
right

Action Normal calculating variables and TCP states

Description Some necessary data don’t pass to the module
Action An error will be returned

Description Necessary data for calculating are wrong
Action An error will be returned

Description Necessary data for calculating are wrong
Action An error will be returned

7 System requirements: Animator

7.1 Message Sequence Chart animation

7.1.1 Overview

Figure 4 is a schematic diagram of how the Message Sequence Chart may look. The
bracket symbols and associated text are just explanations for the figure - they will not
appear in the software.

The Message Sequence Chart is a traditional chart format used in networking protocol
literature. The idea is to present packet interchange between two hosts (marked as A
and B in the figure). Vertical dimension in the figure is the time axis, with the positive
direction being downwards. The figure illustrates also how symbolic information can be
plotted inside the drawing areas and on the sides of the drawing areas, in the so-called
host areas. The figure also illustrates how exchanges on both the application layer and the
transport layer can be orchestrated side-by-side.

7.1.2 Features of the Message Sequence Chart (MSC) animation

Mandatory

28

Figure 4: Schematic diagram of Message Sequence Chart animation display. Columns
are shown in left-to-right order.

� MSC needs to be able to present packet exchanges in the drawing area.

� The length (measured in time) may be greater than can be accommodated on screen
at once, so some kind of scrolling mechanism is required.

� The two operational modes (play/now & stop/scroll) must be implemented.

� At least one protocol header field may be selected to be shown symbolically inside
the drawing area.

� At least four protocol header fields or host variables may be selected to be shown
symbolically inside the host areas.

Optional

� More than one stack layer may be orchestrated side-by-side on screen with the same
time scale. The Animator does not need to be able to show simultaneously multiple
MSC’s with different time scales.

� TPI animation type may be orchestrated with the MSC, simultaneously on screen
with the same time scale.

� UFO animation type may be orchestrated with the MSC, simultaneously on screen
with the same time scale.

� "Show data below now line" setting may be implemented (see below).

29

� The user may be able to augment the presentation with breakpoints and notes.

� The user may be able to view detailed (all available) information about a packet by
clicking on a packet, or a line representing the transfer of a packet.

7.1.3 Application layer on MSC

Events including just one segment on transport layer (e.g. HTTP request that fits in one
TCP segment) are visualized with a line.

Events including many segments on transport layer (e.g. HTTP reply that takes >1 TCP
segments) are visualized with a coloured area. The area represents an abstraction of what
happens on transport layer.

The left and right sides of the area (for visualizing application layer event) are vertical
and go exactly along the corresponding sides of the MSC drawing area. The upper end
of the vertical line corresponds to the first data segment (on transport layer) of the event
being sent/received. Likewise, the lower end corresponds to the last data segment for
the event. ACK-only segments are ignored for this presentation (because including them
would make the visual presentation logically contradictory - reply could begin before
request had ended). Thus, the left and right sides of the area mark the duration in time
of the event from the viewpoint of both of the hosts. The upper and lower sides of the
area are straight lines connecting the lower ends and upper ends of the vertical lines. The
upper and lower sides of the area also correspond exactly to the first and last segment of
data that belong to the event.

The area described above is an abstraction of what goes on on the lower level. The area
geometrically covers the data transfer that goes on in transport layer, but doesn’t show
any details, that are not relevant for the application. From the application’s point of view,
the event is just a duration in time. That’s what the area shows.

Optionally, there may be vertical lines shown outside the actual drawing area (inside
"host" areas) to make it more clear that the duration of the event is related to the states of
the host.

7.1.4 Operating modes for the MSC animation

There are main operating modes for the MSC animation, the "play/now" mode and the
"stop/scroll" mode. (The names reflect analysis rationale for the modes. Different names
will be presented to the end user.)

"Play/now" mode

In this mode the time passes automatically. Conceptually, there is a "now line" that rep-
resents "now" time for the animation. This now line may (probably will be, but is not
mandatorily required) be visualised as a horizontal line in the visualization. The user is
not allowed to scroll the view, scrolling is controlled automatically. Optionally, there may
be an animation of packets moving between the host. These may be simple objects mov-

30

ing along the now line, or a larger and more detailed presentation on a separate panel (this
presentation format is described in a separate description).

"Stop/scroll" mode

In this mode, the time stands still, unless the user takes some actions. The user can use
controls to step the time forward or back. It is possible to scroll the presentation vertically
to show all the data that has been plotted up to the "now" moment in time. Scrolling is a
separate action from controlling the flow of time. Controlling time implies changes in the
state of animation and the hosts, scrolling just manipulates the visual display.

7.1.5 "Show data below now line" setting

Optionally, there may be a setting in the program that allows the user to control if "future"
events should be drawn or not. The default setting is "off", which is the only available
mode, if the setting is not implemented.

� When "on": All the animation data for the scenario is always drawn. If there is a
now line, the now line just glides over data that has already been drawn. This mode
would be useful to allow the user to explore the scenarios. This is NOT preferable
for the initial (first time for the user) presentation of a scenario.

� When "off": Only animation data up to "now" moment is drawn. When time passes
(either is "play" mode or by stepping), more data is drawn. This mode is preferable
for initial presentation of the scenarios, as this mode directs the user’s attention to
how the actions evolve over time. The user may also be encouraged to construct
his/her own predictions of what will happen in "future", based on information that
is available "now". This would be very useful for education.

7.1.6 Presenting numerical information about events

On the MSC, a very limited amount of information about the packets can be presented in
the drawing area. This would be values of just one or two header fields, for example tcp
seq, tcp ack, or the ACK flag. Conceptually, it is preferable to present protocol header
fields inside the drawing area and host variables in the host areas (see figure 4). However,
if values of more than two protocol header fields need to be presented, it needs to be taken
away from the drawing area to avoid clutter.

In the host areas, there can be column-shaped areas reserved for plotting numerical data.
One column is reserved for values of one variable (or header field, if necessary). The
exact selection of columns is scenario-dependent and needs to be fully configurable. The
ordering of columns can either be "left-to-right" or "centric". In "left-to-right" option the
columns are in the same left-to-right order on both hosts. In "centric" option the same
column is closest to drawing are on both sides.

Numerical values will be drawn in the columns next to events. To avoid overlap, the
information should be plotted just above the time-coordinate of received events and just

31

below sent event. This way, if receiving and sending happen very close to each other, the
numerical values will not overlap on screen.

7.1.7 Breakpoints and notes

Breakpoints

A breakpoint marks a specific point in time. When MSC animation is run in "play/now"
mode and a breakpoint is encountered, MSC switches to "stop/scroll" mode. Thus the
function of breakpoints is that the presentation is stopped for user input. To continue
presentation, the user can select a Play button again. The breakpoints have no effect when
the animation is run in "stop/scroll" mode.

Notes

The user can augment a scenario with textual notes. Notes are input and saved as ASCII
(optionally, Unicode) text. Each note is mapped to a point in time and a host (either A or
B). The notes are presented in host areas, in a separate column. The column width may
be configurable. Optionally, the font size for notes may be configurable (either per note
or per scenario).

7.2 Encapsulation animation

The encapsulation and de-encapsulation of data in the hosts is inherently an "instanta-
neous" event from the point of view of the scenario in which it is happening. This is why
the ENC animation type should be considered something that is displayed in a timeless
"paused" or "stopped" state of the animator module. It should be possible to switch be-
tween the main MSC animation and the ENC modes in a way that the enc mode "stops"
the MSC animation if it is not already stopped, and displays a particular encapsulation-
deencapsulation pair.

There are two operating modes for the ENC animation:

� Encapsulation

� De-encapsulation (identical, in reverse)

7.2.1 Presenting numerical information about packets/encapsulation

The ENC panel is expected to function so that it takes up roughly half of the screen,
vertically split from top to bottom, while the other half would be available for showing
information about the packets, or the current state of the MSC, possibly.

The encapsulation would be animated so that it begins with a single application level unit,
and proceeds to split it, if this is the case. After this, it is encapsulated in the transport
layer as payload, and the header information is written into the transport unit header.
(TCP or UDP header). Then this is encapsulated in a single IP datagram. (Splitting TCP

32

GET /index.html HTTP/1.1
Host: www.cs.helsinki.fi
...

HTTP Request

TCP Header details TCP Header details

IP Header details IP Header details

2048 bytes

1024 bytes 1024 bytes

1024 bytes 60 bytes 1024 bytes 60 bytes

1084 bytes 1084 bytes32 bytes 32 bytes

total network transfer: 2232 bytes

Figure 5: A sketch of the Encapsulation animation display.

segments is not yet supported by any scenario, but it could be easily visualized by just
extending the same principle already in use to the network-transport layer.)

The deencapsulation should be visualized by playing the encapsulation in reverse, so that
the animatino begins with one or more encapsulated network level units, and proceeds to
"piece together" the higher level units from the payloads. This mode should replace the
encapsulation, only one needs to be shown at a time.

Sizes of units should be shown with braces and real KByte size integers, displaying how
the layer is shrunk to fit into the lower layer payload in the animation. The payload should
be smaller than the header for each layer. Also possibly certain header information can
be displayed in the header area fr each relevant unit, but only on it’s appropriate layer,
on lower layers the header is shown, along with the payload, as being nothing more than
payload for that lower layer. See associated image.

7.2.2 Mapping transfer units to other units in higher layers

In all scenarios it is not possible to reasonably map all lower level protocol entities to
upper level entities. If it’s not possible to know what the application layer entity is, the
animation only shows one app layer entity and shows the encapsulation into the lower
layers. show only 2 TCP layer packets. In the case where an upper level entity (such

33

as a large HTTP response) is present, the ENC is only able to show the encapslation of
certain, predefined transport level entities, for example the first TCP packets. The ENC
animation would thus be specific to a certain higher level entity, and although each and
every TCP packet constituting the response will be present in the MSC animation, only a
certain subset needs to be displayed for the user to grasp the concept at hand.

7.2.3 Mapping breakpoints and notes to encapsulation animation

If breakpoints and notes will be implemented for the encapsulation animation, they need
to be mapped to specific phases of the animation. Within a scenario the breakpoints and
notes will first need to be mapped to a particular protocol transfer unit (e.g. IP packet or a
TCP segment). Within the encapsulation animation the breakpoint or note will need to be
mapped to mode of presentation (either encapsulation or de-encapsulation) and a specific
layer.

7.3 Unit Flow Orchestration animation

Endpoint BEndpoint A

TCP segment TCP segment

ACK ACKACK

Figure 6: A sketch of the Unit Flow Orchestration animation display.

The Unit Flow Orchestration (UFO) is an animation type that is meant to be displayed in
conjuction with the MSC animation. In the MSC, each unit transferred on a certain layer
(application, transport or network) is simply visualized as an arrow. In the UFO, these
units are visualized as "unit" objects moving across ’channels’ (one channel to each host,
each channel is "one-way"). The sizes of the unit can be visualized by drawing the objects
in their proportional sizes, or optionally in an adjusted logarithmic scale, to better allow
for objects of vastly different size.

The main features of the UFO would be that it follows, at all times possible, the movement
of the now-line. What the ufo shows in a paused state would be the same as the MSC,

34

however ina stopped state (where no now line is relevant) the behaviour of the UFO also
not relevant. The UFO panel can be used to display general host configuration data, or
something else relevant in this state.

Note: This animation type should be considered optional at this point

7.4 Transfer Progress Indicator animation

Bytes
transferred 0 1024 2048 3072 4096

Segments
sent

ACKs
received 48%

0% 100%

Figure 7: A sketch of the Transfer Progress Indicator animation display.

Transfer Progress Indicator (TPI) is an animation type whose purpose is to visualize the
following things:

� total amount of data (bytes) sent between two endpoints

� progress (bytes, percentage) of the data transfer

� practical meaning of variables like cwnd

TPI is meant to be viewed in conjuction with the MSC animation. TPI is specific to the
TCP protocol. TPI enhances conceptual understanding of the data transferred through the
TCP connection. TPI shows the idea that the TCP segments together form a large stream
of data. TPI can also be used to visually present the meaning of congestion window
(cwnd) and possibly ssthresh or other related variables.

Note: This animation type should be considered optional at this point

7.5 Scenario file format

The scenario file format needs to be able to express a sequence of more than one presen-
tations. (In other words the same protocol exchange, viewed with different settings, with
different animation types, or different variables.) Attributes for one presentation are the
animation type, precise configuration (including free selection of variables) for animation
type, starting time and ending time of animation (in the same scale as animation data),
possible breakpoints and educational note texts.

35

8 Protocol events file

The protocol events file is the normal output of the Analyzer. It contains network traffic
data obtained from two packet trace files and processed by the Analyzer. The protocol
events file is read by the Animator.

The protocol events file should contain all the network traffic data, which is needed by the
Animator to perform the animation. The restriction is that the information, which can’t
be extracted from the packet trace files, is not presented in the protocol events file. The
protocol events file format should allow user to insert additional information, which can’t
be extracted by the Analyzer, but is used by the Animator, manually.

The basic format of the protocol events file should support three network layers: network
layer, transport layer, and application layer. The basic format should support the following
protocols on the corresponding layers:

� network layer: IP;

� transport layer: TCP, UDP;

� application layer: HTTP, DNS.

The protocol events file format should contain information on packet encapsulation.

The protocol events file format should be extensible, human-readable and editable. Cur-
rent suggestion is to use XML for the protocol events file format.

9 High-level architecture

The high-level architecture model of the DaCoPAn system is presented in Figure 8. The
figure presents the architecture for the product to be created from a very high level and
is still open for changes in the design phase. It is an approximation on how the software
might be created when real architecture design is started. The main purpose of this section
(and the diagram) is to show concretely where the different requirements presented in this
document fit in the actual product.

The diagram shows interaction between different components of the system and its sub-
systems, interaction between users and the system, and the input and output data formats
used by the software.

The DaCoPAn software consists of two large subsystems, the Analyzer and the Animator,
which are connected by a file format called Protocol events file format. The Animator
also uses another file format for adding user setup and comments to the data produced by
the analyzer. This file format is called Scenario file format.

In the figure you can also see which different groups of users are using which components
of the system. The analyzer is supposed to be only used by lecturers and researchers to
create Protocol events files. Then this file can be given as input to the animator. The

36

animator can be used by any user group, including the students, to observe the behaviour
of protocols in a network.

 DaCoPAn

 Animator

Teacher
Reseacher����������	��

 Analyzer

Teacher
Reseacher

Protocol events
file

Host#2
IP-address

tcpdump log

Host#1
IP-address

tcpdump log

Log readerMessages
mapping

Events calculator
Write protocol

events file

Mapping data from
tcpdump log files

Read tcpdum
log files

Read protocol
events file

Input names of
tcpdump log files

and two IP-address

Scenario file

Animation User Interface

File input

File output

Read scenario
file

Write scenario
file

Watch the
animation

Control the
animation

Data structures
and settings

Store data

Edit settings

Figure 8: High-level architecture model of the DaCoPAn product

9.1 Analyzer

High-level model of subsystems of the analyzer will consist of 3 general components: Log
reader, Messages mapping and Events calculator. It is in detail described in the subsection
“Analyzer” of the section “System requirements”.

9.2 Animator

The actual implementation and design of the animator will be much more complex than
what is seen in Figure 8, but by looking at that figure you can gain a basic understanding
on the different parts of the work that the animator has to be able to do.

In addition to the diagram there are data structures for storing the data loaded from the
animation file (either protocol events file or scenario file) and setup data from the user or
the scenario file. Those are used by different components of the product.

37

9.2.1 File input and output

The animator subsystem has to be able to load networking data from protocol events files
created by the analyzer as this file format is the bridge between these two modules of the
DaCoPAn software. The animator can also use scenario files that have the same network-
ing data as the protocol events files, but also include a section for adding animation setup
(e.g. breakpoints and notes).

The data is loaded into data structures which in turn have some kind of class hierarchy of
their own.

Another part of the software beside loading files is saving files. The animator will not be
able to create and output network data — that is only created in the analyzer — but it will
output animation setup data. That data will be merged to the files created by the analyzer
so that setup related to some specific scenario can easily be later retrieved by just loading
the file.

9.2.2 Animation

The animation module is a large one and actually encapsulates a lot of action in this dia-
gram. It includes the common parts for showing animations (e.g. communication with the
user interface) and then all the different animation types supported by the software. More
information about different animation types is presented in section 6.3 of this document.

9.2.3 User Interface

The user interface is the means for the user to communicate with the animator. It is there-
fore important that it is intuitive and easy to use in a powerful way. The user will be able
to use it for controlling the animation viewing by changing the view modes and stepping
in the animation. He/she can also use the user interface to edit comments, breakpoints,
and other setup information presented in the earlier sections of this document.

