
Project plan

DaCoPAn

Helsinki 18th February 2004

Software Engineering Project

UNIVERSITY OF HELSINKI UNIVERSITY OF PETROZAVODSK
Department of Computer Science Department of Computer Science

Course
581260 Software Engineering Project (

�
cr)

Project Group
Carlos Arrastia Aparicio
Jari Aarniala
Alejandro Fernandez Rey
Vesa Vainio
Jarkko Laine
Jonathan Brown

Kirill Kulakov
Andrey Salo
Andrey Ananin
Mikhail Kryshen
Viktor Surikov

Customer
Markku Kojo

Project Masters
Juha Taina (Supervisor)
Yury Bogoyavlenskiy (Supervisor)

Turjo Tuohiniemi (Instructor)
Dmitry Korzun (Instructor)

Homepage
http://www.cs.helsinki.fi/group/dacopan

Change Log
Version Date Modifications
1.00 17.02.2004 The first published version.

i

Contents

1 Introduction 1

2 Organization 2

2.1 Supervisors . 2

2.2 Customer . 4

2.3 Instructors . 4

2.4 Helsinki student group . 4

2.5 Petrozavodsk student group . 5

2.6 Explanation of the roles . 6

3 Working procedures, monitoring and reporting 7

3.1 Communication . 7

3.1.1 The mailing lists . 7

3.1.2 The project discussion board . 8

3.1.3 Email . 8

3.1.4 Meetings . 8

3.1.5 Instant messaging . 9

3.1.6 Communication with the customer 9

3.2 Cooperative work . 9

3.2.1 CVS repository . 10

3.3 Monitoring and reporting mechanisms 10

3.3.1 Monitoring . 10

3.3.2 The TWiki web system . 11

3.3.3 Reviews and oversights . 11

3.3.4 Reporting . 12

4 Resource requirements 13

4.1 tcpdump . 13

4.2 Similar existing programs . 13

4.3 Development and testing tools . 13

4.4 Working environment . 13

5 Size estimate 13

ii

5.1 Analyzer (Petrozavodsk group) . 14

5.2 Animator (Helsinki group) . 14

5.3 Integral estimate . 16

6 Schedule 16

6.1 Global phases . 16

6.2 Petrozavodsk group schedule . 16

6.3 Helsinki group schedule . 19

7 Risk analysis 19

8 SE techniques and CASE tools 22

8.1 SE techniques . 22

8.2 CASE tools . 22

8.2.1 Documentation . 22

8.2.2 Design . 22

8.2.3 Programming . 22

8.2.4 Testing . 22

8.2.5 Support systems . 23

References 23

1

1 Introduction

DaCoPAn is a joint, distributed software engineering project between the University of
Helsinki, Department of Computer Science, and the University of Petrozavodsk, Depart-
ment of Computer Science. The students participating the project are representatives of
three universities: Helsinki, Petrozavodsk, and Autonoma of Madrid. The name DaCo-
PAn stands for visualization of Data Communication Protocols through Animation.

The general goal of the project is twofold (in order of priority).

1. Experimenting with a geographically distributed software engineering project. The
idea for this type of inter-departmental cooperation was formulated in [1].

2. Developing a simple yet extensible software program for visualizing the behavior
of data communication protocols through animation.

The students receive an impression of both a typical software engineering project and of a
distributed one. The project stakeholders gather and analyze information about these types
of projects. The customer receives the software which implements basic functionality and
supports future extension.

The general idea of the desired software is playback animation of packet trace information
captured from real data communication traffic. Animating TCP/IP traffic is the priority.
The packet traces are gathered at each end point participating the communication; the
basic case is two end points and two tcpdump output logs. The problem of gathering is
not a part of the software to develop.

The aim of the software is thus to help in study and analysis of the protocol message
exchange by animating its behavior. This covers both educational and research targets but
the latter has less priority.

The software is divided into two subsystems in accordance with two major required func-
tions, see Figure 1. These subsystems can run both as an integral system and as stand-
alone applications.

The first subsystem is an analyzer of tcpdump packet traces, one for each end point,
perhaps with some additional data. The traces are combined to create a complete view
of the events in the chronological order. An extensible intermediate format has to be
designed and used to store the combined data (protocol events file).

The second subsystem is an animator of protocol events collected with the analyzer. The
main form is the chronological drawing using a message sequence chart. Other types
of animation can be considered as well. Different layers of the Internet protocols stack
should be supported. A user is also allowed to configure and tune the animation.

The general rules for the project to follow are stated in [2]. The project starts 21.01.2004
and ends 31.05.2004. There are only two periods when both groups work together in a
non-distributed manner: starting the project (Helsinki, 26.01–10.02.2004) and integration
testing (Petrozavodsk, 03–13.05.2004).

2

N E T W O R K Host B
traffic

Host A
traffic

DaCoPAn system

ANIMATOR

modification

visualisation

USER

protocol events file

gathering gathering

protocol events
in chronological order

complete view
of protocol messages exchange

ANALYZER

packet trace packet trace
(tcpdump log)(tcpdump log)

Figure 1: The basic DaCoPAn system context

2 Organization

The DaCoPAn project team is divided into two groups: one group works in Helsinki,
the other one works in Petrozavodsk. The general structure of the project organization is
shown in Figure 2.

TWiki website:
http://db.cs.helsinki.fi/~tkt_daco/twiki/bin/view/Main/DaCoPAn

CVS repository:
cs.helsinki.fi: /home/group/dacopan/

Mailing list of the global team:
ohtuk04-dacopan-global@cs.helsinki.fi

Forum:
http://db.cs.helsinki.fi/~tkt_daco/cgi-bin/forum/YaBB.cgi

2.1 Supervisors

Juha Taina, Senior Lecturer of Computer Science Department of the University of

3

Juha Taina Yury Bogoyavlenskiy

in consensus mode

supervisors

Carlos Arrastia
(project secretary)

Jari Aarniala

Vesa Vainio

Jonathan Brown
(group leader
& manager)

Jarkko Laine

Alejandro Fernandez

students
(Helsinki
group)

Turjo Tuohiniemi
(instructor)

Dmitry Korzun
(instructor)

email, phone

progress report

Markku Kojo
(customer)

TWiki
website

CVS

maintains maintains

External
presentation
of the project

Internal
presentation
of the project

documents
and code

Kirill Kulakov
(local group leader)

Mikhail Kryshen
Andrey Salo

Andrey Ananin

students
(Petrozavodsk

group)

- email
- face-to-face
meetings

- email

reports
(in the web page)

reports
(in the web page)

mailing list, forum

has access to

has access to

Viktor Surikov

Figure 2: The DaCoPAn project structure

Helsinki, PhD.

Phone: +358 9 191 44226
Fax: +358 9 191 44441
Email: juha.taina@cs.helsinki.fi

Yury Bogoyavlenskiy, Head of Computer Science Department of the University of
Petrozavodsk, PhD, associate professor.

Phone: +7(8142)711015
Fax: +7(8142)711000
Email: ybgv@cs.karelia.ru

4

2.2 Customer

Markku Kojo, Senior Researcher of Computer Science Department of the University of
Helsinki.

Phone: +358 9 191 44179
Fax: +358 9 191 44441
Email: markku.kojo@cs.helsinki.fi

2.3 Instructors

Turjo Tuohiniemi, Lecturer of Computer Science Department of the University of
Helsinki.

Phone: +358 9 191 44157
Email: turjo.tuohiniemi@cs.helsinki.fi

Dmitry Korzun, Senior Lecturer of Computer Science Department of the University of
Petrozavodsk, PhD.

Phone: +7(8142)711015
Email: dkorzun@cs.karelia.ru, korzoun@cs.helsinki.fi

2.4 Helsinki student group

Mailing list of the Helsinki group:
ohtuk04-dacopan-helsinki@cs.helsinki.fi

Jonathan Brown, group leader & project manager.

Phone: +358 50 5410112
Email: jonathan.brown@cs.helsinki.fi

Carlos Arrastia, website and CVS repository manager.

Phone: +358 50 4715104
Email: arrastia@cs.helsinki.fi

Jari Aarniala, code manager.

Phone: +358 40 5394434
Email: jari.aarniala@cs.helsinki.fi

Alejandro Fernandez, quality assurance and testing manager.

Phone: +358 50 4719079
Email: afernand@cs.helsinki.fi

5

Vesa Vainio, educational specialist & UI manager.

Phone: +358 40 5636966
Email: vesa.vainio@helsinki.fi

Jarkko Laine, documentation manager.

Phone: +358 400 778508
Email: jarkko.laine@helsinki.fi

The secretary duties in meetings are rotated between group members.

2.5 Petrozavodsk student group

Mailing list of the Petrozavodsk group:
ohtuk04-dacopan-petrozavodsk@cs.helsinki.fi

Kirill Kulakov, group leader, documentation manager.

Master Student of Computer Science Department of the University of Petrozavodsk.

System analysis, modeling, quality assurance, management.

Email: kulakov@cs.karelia.ru, kulakov@cs.helsinki.fi

Andrey Salo, code & technical manager.

Senior Student of Computer Science Department of the University of Petrozavodsk.

Java programming, C programming, translators development, distributed systems.

Email: salo@cs.karelia.ru, ansalo@cs.helsinki.fi

Andrey Ananin, design manager.

Junior Student of Computer Science Department of the University of Petrozavodsk.

C programming, UML design, data structures and algorithms.

Email: ananin@cs.karelia.ru, ananin@cs.helsinki.fi

Mikhail Kryshen, testing & quality assurance manager, keeper of Helsinki group activity
track.

Junior Student of Computer Science Department of the University of Petrozavodsk.

User interface design, architecture, Java programming, Web-design, C programming.

Email: kryshen@cs.karelia.ru, kryshen@cs.helsinki.fi

6

Viktor Surikov, participating the project since Feb 16 2004, developer.

Junior Student of Computer Science Department of the University of Petrozavodsk.

Email: surikov@cs.karelia.ru

The secretary duties at the local meetings are rotated between Andrey Ananin, Mikhail
Kryshen and Andrey Salo.

2.6 Explanation of the roles

In the DaCoPAn project group the following roles have been created, defined and as-
signed. These roles are roles designed to assign leadership and responsibility, not ac-
countability. Each group will make sure that every task is completed as a combined effort,
with the corresponding manager as a driving force, making sure that the effort is focused
and on target. At no point should this leadership surpass the obligation to a democratic,
fair and reasonable decision making process within the project group.

Project manager

This person will take a higher level responsibility for the flow of the project. He will strive
to act as a chairman at any meetings where it is not otherwise predefined who will lead
the discussion. He we try to keep meetings on track and act as an outside spokesperson
wherever the project group needs one. Reporting project progress should be orchestrated
by this person.

Group leader

This person will lead his group to achieve the task at hand. If any question exists about
the sharing of the burden of a particular task, this person should decide the division of
work.

Code Manager

This person supervises the correct and proper development of code in his project group.
He makes sure that coding standards are observed, and that the code is commented, clear
and well designed.

Documentation magager

This person sees that documents are available to all relevant parties and that documents
are created with the proper structure. Assisting the rest of the group with practical issues
concerning documentation is one of the important responsibilities of this person.

Quality assurance manager

This person assures quality of the software and the software production process as well.
This person will also plan and lead the effort to localize the software into the 4 languages
that are planned to be supported at release time.

Testing manager

This person leads the construction of the test plan and test cases, leads the testing itself

7

and helps coordinate the documentation of the testing.

UI manager

This person is active in the design phase as a user interface designer, and then coordinates
the effort of implementing the UI with as much quality as possible. Also helping the
group to arrive at the correct UI design choices will be key in this persons contribution to
the project group.

Educational specialist

This person helps the group to define and then achieve the educational goals of the soft-
ware. Helping to construct the user interface and making sure that principles of effective
learning are observed in the design phase are very important jobs of this person.

Website and CVS manager

This person enables and facilitates the operation of the group in its combined effort to
create the software using the distributed project model by maintaining and updating the
group website and taking care that the CVS system is properly structured and properly
maintained.

3 Working procedures, monitoring and reporting

The procedures used in the day-to-day operation of the project are described in this section
to make it as easy and straightforward as possible for the group members to contribute to
the project. Because of the distributed nature of this project communication is the most
critical issue and therefore this section focuses primarily on this aspect.

3.1 Communication

In the DaCoPAn project communication happens through five channels. Each has a dis-
tinct advantage for a different tasks: Email, mailing lists, a Team Wiki (Twiki) web sys-
tem, a forum and meetings are used. In some cases it might also prove useful to use instant
messaging systems like ICQ or MSN Messenger. Using a telephone or other methods of
communication are also possible in special cases.

3.1.1 The mailing lists

There are three different mailing lists:

� ohtuk04-dacopan-global@cs.helsinki.fi for global issues

� ohtuk04-dacopan-helsinki@cs.helsinki.fi for the Helsinki group’s internal issues

� ohtuk04-dacopan-petrozavodsk@cs.helsinki.fi for the Petrozavodsk group’s inter-
nal issues

8

The mailing lists should be used mainly for informing other group members, as it works
best with messages that don’t form long reply threads. For time critical questions mailing
lists are also the best means of communication.

3.1.2 The project discussion board

The discussion board located at tkt_daco/cgi-bin/forum/YaBB.cgi on
http://db.cs.helsinki.fi/ is the main channel for discussing specific aspects of the
project. It suits longer message threads better than the mailing lists because it stores the
messages in a well organized structure. It is therefore suggested that all messages that
are likely to have more than three replies and are not extremely time critical should be
sent to the discussion board instead of the mailing lists.

If the messages added to the discussion board are time critical and require fast reply, a
note about the created message can be added to the mailing list as well.

Group members should follow the board actively, both by visiting the forum and by using
the "Notify of replies" function of the bulletin board whenever they feel that it is necessary.

3.1.3 Email

In addition to the mailing lists group members can send each other email messages in case
they just want to ask small questions from some other project member or comment on his
work. In any case all larger issues that can effect other people’s work as well should be
addressed to the whole group or subgroup through the mailing list or discussion board.

In email messages it should be clearly stated in the first text line how soon and from whom
a reply is expected. If this is not stated, it is supposed that the message is not time critical
and everyone can use their common sense to decide whether to reply to the mail or not.

3.1.4 Meetings

Both subgroups should organize local meetings where they meet face to face to discuss
the project. Even though there are many other communication methods as well, the power
of "real" communication should not be underestimated. Because of the distributed nature
of this project it is not usually possible for the whole group, meaning both subgroups, to
meet together, so it is very important that the groups write meeting minutes about their
formal meetings. By reading these minutes the groups can follow the meetings held by
the other group.

In addition to formal meetings the groups or some parts of the groups can meet informally
and discuss project related issues. The ideas that come up in informal discussion should be
also taken into account and documented with some other form of communication, which
can be for example writing an email or bringing it up in a formal meeting.

9

3.1.5 Instant messaging

Instant messaging is not to be considered as an official communication method for the
project since it is more like informal than formal discussion. It yet has its advantages and
should therefore be taken into consideration in some special cases.

Because of the distributed approach it is not possible for members of two different sub-
groups to meet each other face to face — this is where instant messaging can help. For
example when two members of two different subgroups are developing parts of the soft-
ware it might be useful for them to be able to discuss what they are doing in real-time.
This cannot be done in a simple way by any of the means described above, but it is possi-
ble using instant messaging.

3.1.6 Communication with the customer

Communication with customer is handled by two methods: e-mail and forum. E-mail is
preferred for single questions that can be probably answered with just one or two mes-
sages. When e-mail is used, it is important that the information from the customer reaches
the whole group. Notifying other group members is the responsibility of the person com-
municating with Mr. Kojo. If no reply is received from the customer after two or more
days, the author of the message can poll by sending another message asking for reply.

The discussion board (forum) can be used in cases when it is probable that the discussion
will require more than one or two messages and it is useful to store the messages as a
thread in the forum. In this case the customer needs to be informed by e-mail that there
is a message waiting for him on the forum. On the forum all communication between the
customer and the project group should take place on the section “Customer communica-
tion”.

The most important thing in communicating with the customer is that he does not have
to discuss the same things many times with different people. So it is important that the
whole group is informed on discussion that has taken place between Mr. Kojo and some
group members.

3.2 Cooperative work

The DaCoPAn project — because of its distributed nature — relies even more than other
projects in strong and seamless cooperation between all the participants of the project.
One part of this is the communication discussed earlier in this section, and the other part
is sharing the documents and other artifacts produced in the course of the development
work.

10

3.2.1 CVS repository

The sharing of documents is mainly done via a CVS repository, in which documentation
and programming language code is stored in text format. Each member of the project
should check the repository every time before starting working on the project and update
their work to it as often as it is reasonably possible.

Any project member can make changes to the documents created by other members —
but if the changes are somewhat bigger than just changing a word, and it is not clear that
the original author would agree on the changes, he should be contacted by e-mail prior to
making the change.

The repository is organized in the following way:

Structure

� Documents: The documents created in the course of the DaCoPAn project including
the working hour logs from the project members

� Source: The project source code is divided into two folders: animator and analyzer.

3.3 Monitoring and reporting mechanisms

An additional demand for the working procedures is that the supervisors and the customer
should be kept up to date with the state of the project. This is achieved through different
means of monitoring and reporting discussed in this section.

3.3.1 Monitoring

The communication between DaCoPAn group members should be conducted in a trans-
parent way using the methods presented in the previous section. The instructors follow
the mailing lists, forum and TWiki, so monitoring the communication between group
members is quite easy. Everything other than communication can be monitored through
the TWiki by any person interested in the project.

Beside that, following actions have to be taken to make it possible for the supervisors and
customer to get a complite picture of the project.

� Minutes of the meetings must be taken for every meeting (global and internal) using
the template available in TWiki (MeetingMinutes).

� During the course of the project several documents have to be published on the
project TWiki. In addition to that the instructor can request the latest versions of the
documents directly from the documentation managers. The documents published
during the project are:

– Project plan (this document)

11

– Requirements specification

– Design document

– Test plan

– Implementation document

– Well commented C and Java source code

– Test execution document

– Conclusion

– User manual

� Internal memos can be written for aspects that are not covered enough by other
documents. These memos can be then added to the TWiki.

3.3.2 The TWiki web system

The web system (tkt_daco/twiki/bin/view/Main/DaCoPAn on http://db.cs.helsinki.fi) is
used mainly for storing finished versions of the documents created in the project and to
present the project to visitors from outside. In this use it works like a normal web page
except that all group members can easily update the files in it.

In addition to the main purpose described above the web system also serves as a means of
sharing useful project related information between the group members by adding links or
small documents to the system. Every section in TWiki can be edited and updated by any
group member.

Structure:

� Home: Introduction / Current status / History of the project and news.

� Overview: Project description / Participating universities / Project Goals.

� Members: Member profiles / Mailing lists.

� Documentation: Document templates / Minutes of the meetings / Time reports tem-
plate.

� Resources/Links: TCP protocol information / Tools used / TWiki resources / Other
links.

� Forum.

3.3.3 Reviews and oversights

Formal reviews are an important part of well-organized quality assurance as they provide
a means to spot errors in an early phase of development. It is well known that a good

12

review meeting is a much more effective tool for finding errors than even the best testing
can ever be.

A review concentrates on one piece of programming code or documentation that is dis-
cussed based on preparations done in advance by attendants. Each member attending a
review should thoroughly read through the product to be reviewed and write down their
comments. A checklist can be used to help finding errors. Careful preparation assures
that the meeting will not be longer than two hours, and the meeting stays effective.

In a review, the person responsible for writing the documents to be reviewed presents
them and then the review leader (Quality Assurance manager) leads the conversation by
walking through the documents. Each participant then presents his notes at the appropriate
time.

It is important to note that in a review the point is not to find solutions for problems
but just to spot errors. The producer probably will be able to fix them later by himself.
Another important thing is that debate should be kept to the minimum and if such issue
raises that the attendants cannot agree on, it should be left open for further discussion or
the producer to decide.

In a formal review notes containing the following information should be taken:

� What was reviewed?

� Who reviewed it?

� What were the findings and conclusions?

At the end of the review the reviewers decide whether the reviewed product should be
(1) accepted without further modifications, (2) rejected due to severe errors — once the
errors have been fixed a new review must be performed — or (3) accepted provisionally,
so that when the errors have been fixed no new review is needed.

The first product to be reviewed in the course of this project is the requirements specifi-
cation. In this review the customer will also be present. After that a number of internal
reviews can be held. The final amount of reviewing will be decided later.

3.3.4 Reporting

The project group should report to its supervisors by sending the following reports:

� Progress report Every member collects a report of his working hours, using the
format description available in TWiki (WorkHoursTemplate) and uploads it to the
CVS repository. These reports are then compiled to one progress report that is sent
to the supervisors. Both subgroups create their own reports. An existing Perl script
that creates this report based on the time reports of each member is available on
CVS.

This report basically indicates the hours worked by each member, the started project
phases, the finished documents, and other issues and feedback to the management.

13

� Conclusion An analysis of the work completed and self-evaluation document must
be written at end of the project.

4 Resource requirements

4.1 tcpdump

The tcpdump packet traces described in the Network Communication Scenarios document
are needed for creation and testing of the analyzer program. The customer should provide
with these as soon as the scenarios are defined.

For extra information it might be useful to have access to run tcpdump by the team itself
as well so that they could for example create non-standard test cases.

4.2 Similar existing programs

Examining some examples of existing TCP-tracing tools might be useful in seeing how
other people have dealt with similar problems. For example running Sea Lion or Sea
Wind software might be interesting.

4.3 Development and testing tools

Common tools for modelling must also be available, as well as appropriate tools for soft-
ware development and testing.

4.4 Working environment

Both groups should have access to several environments to develop and test the program,
or at least agree on a common operative system.

5 Size estimate

The following two techniques are used for the estimate: decomposition of the software
and estimation by analogy.

Decomposition is very natural for this project because the team is divided into two groups
(Helsinki and Petrozavodsk) as well as the software is an integration of two subsystems
(Analyzer and Animator). Each subsystem is assigned to one group. Each group makes
the estimation of its subsystem’s size.

For the estimation by analogy, some similar but completed software in the same applica-
tion domain are used.

14

5.1 Analyzer (Petrozavodsk group)

The Petrozavodsk group consists of 4 implementors; Kirill Kulakov as a group leader will
not participate in pure coding. We assume the implementation phase has not to exceed
four weeks and each developer can write at most 500 lines/month of effective code in
ANSI C.

Therefore, the upper bound for the estimated total size of the analyzer is
�

persons ��� month ������� LOC 	�
������ LOC �

The following software programs were considered for the estimation by analogy.

� tcptrace by Shawn Ostermann, Ohio University,
http://jarok.cs.ohiou.edu/software/tcptrace/tcptrace.html

tcptrace is a tool written by Shawn Ostermann at Ohio University, for anal-
ysis of TCP dump files. It can take as input the files produced by several popular
packet-capture programs, including tcpdump, snoop, etherpeek, HP Net Metrix, and
WinDump. tcptrace can produce several different types of output containing in-
formation on each connection seen, such as elapsed time, bytes and segments sent
and received, retransmissions, round trip times, window advertisements, through-
put, and more. It can also produce a number of graphs for further analysis.

� tcpdump2xml by Vadim Ponomarev, the University of Petrozavodsk, not in pub-
lic domain.

tcpdump2xml program is a tool written by Vadim Ponomarev at Petrozavodsk
State University for tcpdump log files to XML format conversion. It is used to
extract ethernet, ip and tcp headers from tcpdump log and write information to file
in XML format. Format itself is developed by author.

These analogs are used to compute the proportion between the system modules of the
analyzer. According to tcptrace and tcpdump2xml code analysis, 400 LOC is quite
enough to implement a log reader. The message mapping problem seems to be more
complicated than events calculating, thus more LOC are going to be used for message
mapper implementation. The rest of the code is intended for protocol events file writing
routines. The results of the analyzer size estimate are presented in Table 1.

5.2 Animator (Helsinki group)

Here is a description of the different subareas of the animator program that are used in the
integral estimate.

Note: In the design phase it can be considered if it is feasible to create an animation
framework (maybe with a Java interface) for expressing the common functionality be-
tween different animation types. This framework would provide abstraction for the time-
related controls of the animations. The contract of the animations would concentrate on
mapping these external control signals to the visual presentation of the animation.

15

� XML to data structures is a component that somehow reads or maps the XML
data in the intermediate file format to internal memory data structures of the ani-
mator program. Some libraries will be used for low-level parsing of XML. There
are suitable basic libraries in Java 1.4 SE, but another library can be used if a better
alternative is found. The mapping from XML file to data structures can optionally
be bidirectional, so that there would be a mechanism to automatically save the in-
ternal data structures in the same XML format. However, only the reading part is
mandatory.

� Data structures includes Java classes that describe the internal representation of
the animation data. It is estimated that the size of code is rather large compared to
the required effort, because the classes would have lots of fields and accessors that
are all functionally very similar.

� Animation type: MSC means the Message Sequence Chart animation. This in-
cludes all the code that is needed to visually present animation data as a message
sequence chart animation. The animation needs to be configurable for different
layers and for presenting different header fields and host variables. The animation
code also needs to provide accessors for controlling the animation (play, pause, step
back, step forward etc.).

� Animation type: Enc means the animation for packet encapsulation. The anima-
tion should be able to present how data from upper layers is encapsulated as pay-
load for lower layers. The animation should also be able to present fragmentation
and de-fragmentation. The animation should have two modes, one for preparing a
packet to send and one for interpreting the data in a received packet. The visual
presentation may also have two views, one to present all the relevant layers and one
to present more detail on one particular layer. Alternatively the more detailed pre-
sentation may present more animation, while the less detailed view would mostly
be a static diagram. As for the animation data from the intermediate file, the encap-
sulation animation doesn’t proceed in time. From network traffic’s point of view
the encapsulation and de-encapsulation happen instantaneously.

� User interface means all the user interface not contained in any other module. This
means the main frame for the program (including menus etc.) and any other dialogs
that are needed.

� Managing settings means internal representation of animator settings, including
writing them on file in XML format and reading them from file. The student end
user should be able to download one educational scenario in just one file, and he
should be able to start viewing the scenario just by loading the one file and giving a
Play command. To achieve this, there needs to be a file format for storing both the
animation data and the scenario-specific animation settings in the same file. (Only
the animator module needs to be concerned about this. The scenario file format is a
superset of the intermediate file format produced by the Analyzer program.)

16

5.3 Integral estimate

Table 1 contains results of size estimates for analyzer and animator, and integral estimate
in LOC.

Subsystem Programming language LOC Effort
Analyzer �
������

log reader ANSI C (+ POSIX) �
�
��� 20%

messages mapping ANSI C ������� 40%
events calculator ANSI C � � ��� 30%
protocol events file format ANSI C, XML �
���� 10%

Animator Java, XML � � �����
XML to data structures Java, XML � ����� 12%
Data structures Java � � ����� 8%
Animation type: MSC Java � � ����� 28%
Animation type: Enc Java � � ����� 28%
User interface Java � � � ��� 16%
Managing settings Java � ����� 8%

Total size estimate ��� � ���

Table 1: Estimated size of code and relative effort estimates for DaCoPAn system

6 Schedule

This section contains global project schedule and local schedules for each group.

6.1 Global phases

During the project the following artifacts are produced and delivered to the customer:
Project plan, Requirements specification, User manual and DaCoPAn system (source code
and executable program). Integration testing is started simultaneously by both groups.
In addition to this global schedule each group has their own schedules for the design,
implementation and unit testing phases, in accordance with the global schedule.

The global schedule is shown in Table 2. The corresponded GANTT diagram is shown in
Figure 3.

6.2 Petrozavodsk group schedule

The Petrozavodsk group schedule is shown in Figure 4. The first draft of most important
milestones and dates for Petrozavodsk group are presented in the global schedule.

17

Figure 3: Global GANTT diagram

18

Figure 4: GANTT diagram for petrozavodsk group

19

Phase Time period Days Produced artifacts
Project kickoff, or-
ganization

19.01–22.02.2004 3

Petrozavodsk
group in Helsinki

22.01–10.02.2004 20

Scope, Require-
ment elicitation

23.01–10.02.2004 19 Requirements specification

Project planning 27.01–10.02.2004 15 Project plan
Requirement anal-
ysis

01.02–23.02.2004 23 Requirements specification

Design 24.02–28.03.2004 34 Design document,
Test plan

Implementation 29.03–25.04.2004 28 Implementation document,
Commented code

Unit testing 31.03–02.05.2004 33 Test execution document,
Part 1

Subsystem integra-
tion testing

26.04–03.05.2004 10 Test execution document,
Part 2

Helsinki group in
Petrozavodsk

03.05–13.05.2004 10

Integration testing 03.05–13.05.2004 10 Test execution document,
Part 3

Conclusion 14.05–20.05.2004 7 Conclusion document,
User manual
DaCoPAn system

Table 2: Project schedule

6.3 Helsinki group schedule

Current consensus is that the internal schedule of the Helsinki group will adhere to the
global schedule. All document milestones are expected to be met as specified in the global
schedule.

7 Risk analysis

This section contains a breakdown of unforseen difficulties. Each risk that the project
might face is documented, so it can be recognized at review meetings. There is an ac-
tion plan of what to do if the risk materializes, and an estimate of the probability of the
actualization of the risk. These probabilities can be graded as high, medium and low.

20

Risk Short description of the risk
Probability Low - Medium - High
Severity Low - Medium - High
Minimizing risk Steps to minimize the probability of the risk
Recognition What are the signs of the risk materializing?
If materializes What to do if the risk materializes, "damage control"

Table 3: Legend

Risk The schedule of the project isn’t met
Probability Low
Severity Medium
Minimizing risk The project manager should monitor the progress of the project

group and react if the project is lagging behind. Each member
of the group should keep track of his own progress, and report
to the project manager should his task(s) prove to be more time-
consuming than was expected. The workload of the two groups
should be balanced. Work should be distributed so that approxi-
mately the same amount of time is spent on the project per week.

Recognition Milestones / checkpoints are delayed
If materializes Rework the schedule so that the project can be finished on time,

for example some parts of the project could be left out in order to
deliver the product on time.

Risk Incorrect distribution of development work
Probability Low
Severity Medium
Minimizing risk Careful planning in requirement phase and in design phase
Recognition If work load is not balanced, or if core skills required are not

present in either group
If materializes Some tasks can be reassigned and communication increased

21

Risk Communication between groups insufficient
Probability Medium
Severity High
Minimizing risk Maintaining established communication channels and making

sure the content is correct.
Recognition If there are inconsistencies or incompatibilities between the work

of the 2 groups.
If materializes Project managers re-establish the rules of communication and

make sure all members are communicating the right information
at the right times.

Risk Members get sick or suffer other incapacitation
Probability Low
Severity Low
Minimizing risk -
Recognition -
If materializes Some tasks can be reassigned and workload redistributed

Risk Finished product doesn’t meet customer’s requirements
Probability Low
Severity High
Minimizing risk Communicating with the customer efficiently during the require-

ments phase, also keeping close contact during the subsequent
phases. Prototypes of the software could be shown to the cus-
tomer before the product is finished in order to notice any incon-
sistencies with the requirements before the product is finished

Recognition Customer is not satisfied with the final product
If materializes If the risk materializes after the product has been finished, the

chances of making any changes to it are minimal, since this
project has a tight schedule. However, if prototypes of the pro-
gram are shown to the customer during development and it is clear
that the program will not meet the original requirements, some ad-
justments to the design / implementation of the program could be
made.

22

Risk The components of the product are incompatible
Probability Low
Severity Medium
Minimizing risk Accurate specs of the interface between the 2 components
Recognition If incompatibilities are encountered during integration testing
If materializes Using specs, find out which component doesn’t comply to the

interface defined earlier. The non-compliant component should
be adjusted so that it implements the interface.

8 SE techniques and CASE tools

8.1 SE techniques

The project will be carried out using the waterfall development model. This model is
sufficiently simple, yet efficient for smaller projects, and considering that this is a first
attempt at a distributed project, the model should be simple. Another reason for this
model is that it limits the customer’s presence mainly to the beginning of the process. His
future availability for intense communication remains uncertain.
A use-case approach will be used for requirement elicitation and modeling user require-
ments (problem domain) and system requirements (software domain).

8.2 CASE tools

Table 4 shows a summary of chosen CASE tools for the DaCoPAn project.

8.2.1 Documentation

Documentation is done using the LATEX typesetting system. The group members can use
any text editors they like. A script for compiling the documents to their final format is
also available.

8.2.2 Design

In designing the produt some UML and other diagram tools are needed.

8.2.3 Programming

Some C and Java compilers and development environments are used.

8.2.4 Testing

In unit testing JUnit and Cppunit can be used.

23

8.2.5 Support systems

Other tools used during the whole course of the project are CVS, TWiki web system,
E-mail and other communication means.

CASE tool C
om

m
un

ic
at

io
n

Pl
an

ni
ng

D
oc

um
en

ta
ti

on

R
ep

or
ti

ng

M
od

el
in

g

In
te

gr
at

io
n

V
er

si
on

m
an

ag
em

en
t

B
ui

ld
in

g

Pr
ot

ot
yp

in
g

M
et

ho
d-

su
pp

or
t

L
an

gu
ag

e-
pr

oc
es

si
ng

Pr
og

ra
m

an
al

ys
is

Te
st

in
g

D
eb

ug
gi

ng

Email x
LaTeX x x
CVS x x
Team Wiki x x
XFig, Dia x
C, Java x
Make x x
Turjo’s progress re-
port script

x

Gantt project x

Table 4: CASE tools selection and distribution

References

1 T.Alanko, Y.Bogoyavlenskiy, The Plan of Practical Actions for the Devel-
oping of the Cooperation between Departments of Computer Science of the
Universities of Helsinki and Petrozavodsk. Release 2.0, 18 of April 2001.
Universities of Helsinki and Petrozavodsk.

2 J. Taina, D. Korzun, T. Tuohiniemi, T. Alanko, Y. Bogoyavlenskiy, Software
Engineering Project: Distributed Approach. Release 1.0, January 2004.
Universities of Helsinki and Petrozavodsk.

