
Design

DaCoPAn

Helsinki 31st May 2004

Software Engineering Project

UNIVERSITY OF HELSINKI UNIVERSITY OF PETROZAVODSK
Department of Computer Science Department of Computer Science

Course
581260 Software Engineering Project (

�
cr)

Project Group
Carlos Arrastia Aparicio
Jari Aarniala
Alejandro Fernandez Rey
Vesa Vainio
Jarkko Laine
Jonathan Brown

Kirill Kulakov
Andrey Salo
Andrey Ananin
Mikhail Kryshen
Viktor Surikov

Customer
Markku Kojo

Project Masters
Juha Taina (Supervisor)
Yury Bogoyavlenskiy (Supervisor)

Turjo Tuohiniemi (Instructor)
Dmitry Korzun (Instructor)

Homepage
http://www.cs.helsinki.fi/group/dacopan

Change Log
Version Date Modifications
1.0 Put the date here First version

i

Contents

1 Introduction 1

2 Architecture 1

3 Subsystems interface 2

References 4

1

1 Introduction

This document defines integration design for DaCoPAn software according to [4]. The
document can be considered as a model for sufficient implementation of the requirements,
stated in the Requirements specification [3].

The DaCoPAn software is composed by two main subsystems, which are the DaCoPAn
Analyzer and the DaCoPAn Animator. The specific design of each of them will be pre-
sented in separate documents [1, 2].

The integration architecture of the DaCoPAn software is presented in section 2. The
integration subsystems interface and Protocol events file document type definition is de-
scribed in section 3.

The document is intended mainly for the project development team. Experts from cus-
tomer’s side may analyze this document to be sure that the requirements are going to be
implemented sufficiently and efficiently.

This specification may be changed during the implementation phase. All such changes
must be shortly described and grounded in a separate document — The Implementation
Document.

2 Architecture

 DaCoPAn

 Animator

Teacher
Reseacher
Student7

 Analyzer

Teacher
Reseacher

Protocol events
file

Host#2
IP-address
tcpdump log

Host#1
IP-address
tcpdump log

Log reader
Messages
mapping

Events calculator

Read protocol
events file

Input names of
tcpdump log files,
 two IP-address

and some additional
information

Scenario file
Animation User Interface

File input

File output

Read scenario
file

Write scenario
file

Watch the
animation

Control the
animation

Data structures
and settings

Store data

Edit settings

cmd line parser

Error processing
module

Protocol events
file writer Main module

Data
repository

Additional log
file

Figure 1: General architecture model of the DaCoPAn product

2

The high-level architecture model of the DaCoPAn system is presented in Figure 1. This
is more detailed architecture for the product than in the Requirements specification [3].

The diagram shows interaction between two main subsystems, their modules, interaction
between users and the DaCoPAn system, and the input and output data.

The DaCoPAn software consists of two large subsystems: the Analyzer and the Animator,
which are connected by a file called Protocol events file. The Animator also uses another
file for adding user settings and comments to the data produced by the Analyzer. This file
is called the Scenario file.

Figure 1 shows different groups of users and relations between groups and components
of the system. Lecturer and researcher use the Analyzer for creating Protocol events files.
This file contains data about the network traffic that will be animated by the animator.
Each user group can change any data in Protocol events file manually. Each group use the
Animator for observing the behavior of protocols in a network.

3 Subsystems interface

The Protocol Events File (PEF) is the interface between Analyzer and Animator modules.
It is the output of the Analyzer, it is read by the Animator, and it contains the necessary
packet interchange data. Some of this information may as well have been added manually
to the PEF. The use of XML has been preferred in an attempt to make the PEF extensible,
human-readable and editable.

The DTD (Document Type Definition) to which any PEF must conform follows. It con-
tains information about:

� Hosts: include an id for internal use, its IP address, and maybe a hostname.

� Flows: include an id, 2 host ids, and their 2 ports.

� Links: include an id and 2 host ids.

� Layers: include an id and name; inside each layer definition, the protocols particu-
lar to that layer can be found. Protocol definition includes an id and a name.

� Variables: contain constant and dynamic variable definitions. Constants include a
name, and maybe a host id, a link id and/or a protocol id. The value of the constant
variable is specified after the definition. Variables (those variables that change from
unit to unit, for instance) include name, protocol id and scope (flow/unit/unit-field).
Their values are specified later inside the units.

� Events: different types of units compose the actual packet data. Unit sents include
id, source id, destination id, protocol id and may include flow id, time and children
id list. Values of dynamic variables are specified inside them. Unit receiveds in-
clude an id corresponding to a unit sent id, and the time when the unit was received
in destination. Unit droppeds have an id and the time when the unit is dropped.

3

<!--
Document type declaration (DTD) for the protocol events file format.
$Id: events.dtd,v 1.7 2004/05/07 13:56:25 aarniala-dacopan Exp $

-->

<!-- Root element of a PEF document -->
<!ELEMENT protocol_events (hosts, flows, links, layers, variables, events)>

<!-- List of hosts present in the scenario -->
<!ELEMENT hosts (host*)>

<!ELEMENT host EMPTY>
<!-- Host id format: H1, H2 etc. -->
<!ATTLIST host

id ID #REQUIRED
ip CDATA #REQUIRED
hostname CDATA #IMPLIED>

<!-- List of distinguishable flows (e.g. TCP connections) in the scenario -->
<!ELEMENT flows (flow*)>

<!ELEMENT flow EMPTY>
<!-- Flow id format: F1, F2 etc. -->
<!ATTLIST flow

id ID #REQUIRED
host1 IDREF #REQUIRED
port1 NMTOKEN #REQUIRED
host2 IDREF #REQUIRED
port2 NMTOKEN #REQUIRED>

<!-- A network link between two hosts -->
<!ELEMENT links (link*)>
<!ELEMENT link EMPTY>
<!ATTLIST link

id ID #REQUIRED
host1 IDREF #REQUIRED
host2 IDREF #REQUIRED>

<!-- Network layers -->
<!ELEMENT layers (layer*)>
<!ELEMENT layer (protocol*)>
<!-- Layer id format: L1, L2 etc. -->
<!ATTLIST layer

id ID #REQUIRED
name NMTOKEN #REQUIRED>

<!-- Protocol definition -->
<!ELEMENT protocol EMPTY>
<!-- Protocol id format: P1, P2 etc. -->
<!ATTLIST protocol

id ID #REQUIRED
name NMTOKEN #REQUIRED>

<!-- Variables section with constants and dynamic variable definitions -->
<!ELEMENT variables (constant*, variable*)>

<!--
Variable with a constant value. May be specific to a host,
link, protocol or a combination of thereof.

4

-->
<!ELEMENT constant (#PCDATA)>
<!ATTLIST constant

name NMTOKEN #REQUIRED
host IDREF #IMPLIED
link IDREF #IMPLIED
protocol IDREF #IMPLIED>

<!-- Dynamic variable definition (value is unit-specific) -->
<!ELEMENT variable EMPTY>
<!ATTLIST variable

name NMTOKEN #REQUIRED
protocol IDREFS #REQUIRED
scope (flow|unit|unit-field) #REQUIRED>

<!-- Actual protocol events data -->
<!ELEMENT events (unit_sent|unit_received|unit_dropped)*>

<!-- The event for a sent unit -->
<!ELEMENT unit_sent (value*)>
<!-- Unit id format: U1, U2 etc. -->
<!ATTLIST unit_sent

id ID #REQUIRED
flow IDREF #IMPLIED
source IDREF #REQUIRED
destination IDREF #REQUIRED
protocol IDREF #REQUIRED
time NMTOKEN #IMPLIED
children IDREFS #IMPLIED>

<!-- The value of a dynamic variable -->
<!ELEMENT value (#PCDATA)>
<!ATTLIST value

name CDATA #REQUIRED>

<!-- The event for a received unit -->
<!ELEMENT unit_received EMPTY>
<!-- The "id" attribute references the corresponding unit_sent -tag -->
<!ATTLIST unit_received

id IDREF #REQUIRED
time NMTOKEN #IMPLIED>

<!-- The event for a dropped unit -->
<!ELEMENT unit_dropped EMPTY>
<!ATTLIST unit_dropped

id IDREF #REQUIRED
time NMTOKEN #IMPLIED>

References

1 DaCoPAn Software Engineering project, Design: Analyzer. Release 1.0.
Universities of Helsinki and Petrozavodsk, April 2004.

2 DaCoPAn Software Engineering project, Design: Animator. Release 1.0.

5

Universities of Helsinki and Petrozavodsk, 2004.

3 DaCoPAn Software Engineering project, Requirements specification. Re-
lease 1.0. Universities of Helsinki and Petrozavodsk, March 2004.

4 Taina J., Korzun D., Tuohiniemi T., Alanko T., Bogoyavlenskiy Y., Software
Engineering Project: Distributed Approach. Release 1.0. Universities of
Helsinki and Petrozavodsk, January 2004.

